当前位置:首页 > 运营模型 > “人货场”数据模型场景分析,你搞懂了没?

“人货场”数据模型场景分析,你搞懂了没?14889次阅读

做数据分析的同学,可能很多都听过人、货、场分析模型。但是大多数人只是知道这个模型,对其具体应用却不了解。本文作者结合实际分析,对此进行了系统的讲解,与大家分享,希望通过此文能够加深你对“人货场”模型的认识。

问题场景:

某生鲜电商,用户复购率较低,60%的用户在30天内无二次购买行为,运营领导非常着急,要求通过数据分析提升复购率,请问你作为数据分析师该怎么做?

  1. 建立人工智能精准推荐算法(40%概率用协同过滤,60%用关联分析)

  2. 把过往6个月月初复购率做成折线图,然后写下苍劲有力的三个大字:“要搞高!”

  3. 分析个啥,做电商不就是派券吗!所有无复购用户派券,干就完了奥力给!

还是你有其他办法?

一、货物属性分析

先问一个简单问题:大米、白面、一桶油和草莓、车厘子、山竹有什么区别?即使你没买过菜也知道:米面油是每天都得吃的东西,没啥季节性;草莓、车厘子、山竹不会每天吃,季节性很强。如果去菜市场或者超市逛一下又会知道:米面油一般是整包、整桶买,买回去一桶能吃很久,还有专门的米桶、米盒、油壶用来分装。草莓山竹一般拆散零售,而且不耐放,买回去不吃过几天就坏了。

这些看似家常便饭的产品知识,统称为:货物属性。货物属性会直接影响到消费者购买行为:

  • 购买频率:新鲜蔬菜水果购买频率高,米面油购买频率低

  • 上市季节:新鲜蔬菜水果有当季产品,反季节的卖的贵也不好吃,米面油没啥季节性

  • 产品价格:单品价格贵的就卖的少,趁便宜买,零散买,便宜的就批量买

  • 购买渠道:如果有物流配送,大件硬通货(米面油)在线上买更省事,散件的就线下买,最好能现场试吃几个避免踩雷

这些货物属性是常识,是自然规律,不会因为数据指标的计算方式而改变。因此在生鲜产品中,用户行为会直接受到过往购买产品的影响——你不能太指望一个用户刚买10斤大米,过两天又来买10斤。或者说,如果真的有用户反反复复的来买大米,那你得检查下自己提供的大米是不是比市场价便宜很多,有人在薅羊毛薅的情况呢。

有一个简单的矩阵模型可以描述生鲜产品的复购思路,核心是产品购买频率和产品关联度。购买频率上文有解释,产品关联度指的是某些产品天生会一块买。特别在生鲜领域,比如买了冻鸡翅、竹签,很有可能会买木炭、丸子、烧烤汁,因此两维度交叉既有如下矩阵(如下图)

“人货场”数据模型场景分析,你搞懂了没?

但注意,只从货物属性一个角度来看,是很不完整的。买菜的渠道多的很,凭啥用户非得在app里戳来戳去。菜市场不香吗?APP/微商城的吸引力又在哪里呢?这就涉及:场的问题.

二、卖场属性分析

快速问一个问题:你今天中午准备吃啥?不要思考,马上回答!

十个同学有十个答不上来,对不对。实际上让你对着饿了吗你都得纠结十几二十分钟,更不要说提前预备了。

买菜也是同理,为啥老人家喜欢逛菜市,一个很重要的原因就是做饭本没啥目的性,现场看着啥顺眼买点啥,二来可以货比三家挑挑新鲜便宜的。菜市场,包括超市的生鲜区给人的视觉冲击是远远强过电商的,这就是卖场属性对复购行为带来的影响。

卖场属性,包含:

  • 便利性:距离越近、越方便的菜场肯定越吸引人

  • 整洁程度:越干净的菜场肯定更吸引人

  • 产品丰富程度:菜品越丰富的菜场越吸引人

  • 产品新鲜度:菜品越新鲜水灵的越吸引人

  • 产品价格:因为铺租、人工不同,有的卖场就是死贵死贵的

在传统线下门店里,关于卖场位置也有个矩阵模型。(如下图)

“人货场”数据模型场景分析,你搞懂了没?

线上渠道用的指标和线下类似,区别是,用户的登录场景、登录频次、登录后访问内容,代替了门店位置远近。线上渠道在内容和跳转路径上能做的分析,是远多于线下的。

有意思的是,不同于服装、零食、玩具等快消品,在生鲜领域,线上渠道的体验反而比线下差。因此线上生鲜优势体现在:不能出门的场景上。比如下雨天,比如疫情期间交通管控,比如上下班没时间逛菜市场等等等。

然而这就又引发第三个问题:有些用户可能就是单纯图便宜,有些用户真的有线上购买的刚需。因此必须考虑人的因素。

三、用户属性分析

注意,传统行业讲人货场,人指的是售货员,不是消费者。所谓人效指的是业务员平均产生的经济效益。但是互联网应用是APP对用户,没有销售概念,因此才把售货员改成用户,所谓人的分析,变成用户属性分析。

一提用户属性,很多同学条件反射的都是:性别、年龄、地域。问题是你的公司真的能采集到这么多真实的用户信息?而且这些字段不见得能看出啥,最典型的就是性别,男女比例差异常常只有几个点,能说明个屁问题。

基于互动、消费行为标签会更好用,比如生鲜电商的领域,有多少客户是注册送20元米面油券,首单免配送费,进口车厘子25元4斤这种活动搞进来的。这叫促销敏感型用户。类似的,还可以打:刚性购买用户、异常天气购买用户、疫区用户等等标签,这些可能区分度更高(如下图)

“人货场”数据模型场景分析,你搞懂了没?

四、人货场模型搭建

有了三个维度的基础理解,就能用来综合解释问题。回到开头的“生鲜电商复购率低”的问题。可以先从人货场角度建立分析假设:

人角度:

  • 地推质量太差,用户本身没有需求

  • 用户有需求,但是薅羊毛型太多,刚需性少

  • 刚需用户有一定量,但产品不符合用户需求

货角度:

  • 商品本身品类太少

  • 品类不少,但没有强势引流款

  • 有引流款,但价格没优势

场角度:

  • 用户习惯未建立,二次登陆都很少

  • 二次登陆有,但没有进到购买页

  • 进到购买页,但未下单

各自建立假设后,有两种方法建立整体思路:

第一,从数据出发,哪个问题严重就从哪里下手

第二,从业务出发,最近发生哪些大事,从哪里下手

如下图:

“人货场”数据模型场景分析,你搞懂了没?

最后可以把各个分析维度拧起来,组成整体分析逻辑,从粗到细形成结论,如下图:

“人货场”数据模型场景分析,你搞懂了没?

五、小结

人货场三个维度之所以经常用,是因为这三者与用户行为有直接关系,并且商品属性、卖场属性、用户习惯都有一些天生的规律可循。因此很适合作为分析的基础,做深做细。一方面能对业务有更清晰的认知;另一方面,想建立更复杂的模型也有线索了。

然而现在行业里普遍存在的问题,是做业务的新人就知道发券,难言之隐一券了之,还美其名曰:互联网思维就是免费!做数据的新人就知道RFM,关联分析,一讲模型就想协同过滤,拜托小哥哥们,就你那平台用户粘性,百分之六七十一次登录,用户天生就是优惠券买来的,有多少真实数据给你训练模型呢。就像生鲜电商行业,真去几趟菜场,和买菜主力人群:大爷大妈、家庭主妇聊聊,会比每天和吃饿了吗的同事讨论AARRR有用的多,可以一试哦。

有同学会问,有没有复购率的更普遍分析场景,如果感兴趣的话,关注接地气的陈老师,下一篇我们分享复购率在医美行业应用哦,敬请期待。

版权声明:本文由汇运营发布,如需转载请注明出处。

本文链接:http://huiyunying.com/109.html

与本文相关的内容

如何从0全方位搭建线上运营体系?

运营体系分为运营思维模型和运营实操方法论,下面将从这两个大的层面进行分享说明,内容来源于自己工作、学习经验,仅供参考。运营九字方针视觉锤:形成品牌视觉定式,如洋河蓝色经典,加多宝、可口可乐、Windows图标等;语言钉:类似于USP定位,如过年过节不收礼,收礼只收脑白金;阿里巴巴的让天下没有难做的生...

如何通过分设备投放,降低搜狗账户cpc73%

数字化时代,金融早已不是某个封闭环境下的单维度领域。粗犷式运营转变为精细化运营,开始对客户做细分的管理和营销,以使得客户价值最大化。以普惠金融为代表的新方向标志着诸多银行机构正在全力抢滩下沉市场,积极践行服务实体经济,对更加多元化的客户群体提供价值挖掘、资源协同,从而形成一个全新的金融生态。但是,面...

盘点教育行业的10个社群拉新方式

不知从何时起,教育行业兴起一股社群风,大家都在比谁家的社群人数多,仿佛社群人数的量变成了企业业务量的一个很重要考核风向标。那确实也的确如此,社群的兴起影响了众多企业的前端入口拉新方式,尤其对于教育行业来说,加上今年大方向的“不可抗力因素”,让许多本来只做线下招生的机构不得不转型为线上。而进行线上招生...

做电商设计,你必须懂的10条数据指标

数据指标是什么?——是一个切入数据的角度。有了数据指标的存在,才能知道需要采集什么数据、需要持续监测什么数据、用什么角度来和历史表现做对比。数据指标的类型各种各样,有些指标是被广泛使用的,如 DAU、新注册用户数、PV 等;还有些指标,是带有强烈的业务特征的,例如直播平台可能会关注新增主播数量,酒店...

请看,一场教科书式的新品首发

消费市场端的变化开始了,母婴品牌们也要加快跟紧的脚步了。今年天猫618,博西家电创下历史最佳开门红,其中西门子家电首日即闯入“亿元俱乐部”,不仅突围了疫情影响,也为生意增长做出了新探索。创新成为其中关键。618期间,西门子家电在天猫首发一款高端的嵌入式蒸烤箱新品,从5月20日起,西门子家电、天猫与阿...

非常实用的36条新人直播带货话术

当你进入李佳琦、薇娅的直播间,你会发现自己原本只是来看看,却不知不觉得被带入氛围,忍不住在直播间剁手。为什么他们能成为红人主播?很大程度上是因为他们“能说会道”!从开播到下播,他们都有自己的一套直播话术,并且屡试不爽。所以为了大家避开不必要的坑,社长准备了36条直播话术给大家。不管你是做什么行业,经...